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Abstract—The problem of free and forced convective heat transfer of micropolar fluid in an annulus

of two vertical pipes has been studied by applying Runge-Kutta-Merson method. It has been found

that, when the temperature of the pipes decreases with height, the presence of micropolar elements delay

the onset of instability. On the other hand, when the temperature increases with height it has been noticed

that microrotation enhances the back flow. Effect of micropolar parameters and Rayleigh number on
heat transfer are also discussed in detail.

NOMENCLATURE

a,b, radii of inner and outer cylinders;

r, ¢, z, cylindrical polar coordinates;

7/b,  uniform temperature gradient per unit length
along z-axis;

Ty, Ty, temperatures of the outer and inner pipes
atz=0;

T, temperature of the fluid;

P, pressure;

v, kinematic viscosity;

2, density of the fluid;

py,  density of the fluid at z = O and r = b;

A, thermal diffusivity;

g acceleration due to gravity;

U, K, 7y, material constants;

w, z-component of velocity;

Q, ¢-component of microrotation;

B, coefficient of volume expansion;

Ra, Rayleigh number;

S, non-dimensional parameter;

R, A, non-dimensional micropolar parameters;

n,{, non-dimensional co-ordinates;

s, ratio of the radii.

1. INTRODUCTION

IN RECENT years, the study of microcontinuum fluid
mechanics has remarkable progress. Several theories
describing fluids consisting of molecules, whose lengths
are not negligible when compared with the character-
istic length of the geometry, have been formulated.
Depending upon the approach of formulation fluids
are called by various names such as-—simple micro-
fluids, micropolar fluids, deformable directed fluids,
polar fluids, dipolar fluids, anisotropic fluids etc.

The theory of micropolar fluids developed by
Eringen [1] deals with viscous fluids in which the
microconstituents are rigid and spherical or randomly
oriented. This theory is supposed to describe polymeric
fluids, liquid crystals, animal blood etc. The recent
literature is replete with a wide variety of problems
studied by various authors in this field. The application
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of this theory to biomechanics has been an exciting
topic of current interest. Ariman [2], Turk et al. [3,4]
have analysed some steady and unsteady blood flows
and have seen good agreement with the experimental
results. Kazakai and Ariman [5] have introduced the
theory of heat conducting micropolar fluids and have
analysed the flows between two parallel plates. Ariman
[6]has investigated heat conduction in blood. Balaram
and Sastry [7] have discussed the free convective heat
transfer in a parallel plate vertical channel and have
shown that the fluid acts as a coolant.

Our interest in this paper is to examine the combined
effect of buoyancy force and the pressure gradient on
the flow and heat transfer of a micropolar fluid in
between two concentric cylinders. In Newtonian fluid,
Morton [8] has investigated the laminar convection
in a vertical pipe and has shown that the fluid is more
stable in the case when the pipe temperature increases
with height than in the case when it decreases. In a
recent paper Gupta [9] has extended the analysis of
Morton to unsteady case and has examined the
phenomenon of convective heat transfer in a vertical
pipe, and in coaxial pipes of circular and elliptic
cross-sections.

As the problem on hand is governed by the boundary
value problem consisting of three simultaneous second
order linear differential equations, it appears that it is
not possible to obtain an analytical solution. Hence,
we adopt the Runge-Kutta-Merson method [10],
which automatically adjusts the step length, and obtain
the numerical solution.

2. FORMULATION AND SOLUTION OF THE PROBLEM

We consider the steady laminar flow of an incom-
pressible micropolar fluid between two vertical coaxial
circular cylinders of radii @ and b (b > a). Let z-axis
be coinciding with the axis of the cylinders. We take
the temperature of the inner and outer cylinders as
T,= Ti+1z/b and T, = To+12z/b respectively, and the
temperature of the fluid as T = T,—0(r).
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Under Boussinesq approximation, the equations of
motion and energy governing the flow are given by
d2 1d° x d cp
+K s+ |W+——(rQ)———pg =0, (2.1
(u k)(drz r dr) * dr Y o P9 =

v /
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In the above equations, g is the coefficient of
viscosity, x the coefficient of micro-viscosity and 7 is
the coefficient of couple stress. It can be seen that k¥ = 0
and y = 0 correspond to the Newtonian case. On the
other hand, if x # Oand y = 0, there is no torque arising
from micro stress, and the equation (2.2) indicates
that the microrotational velocity turns out to be half
of vorticity of the fluid.

Using the equation of state p = p,{1+ (T, — T)}, the
equation (2.1) can be rewritten as

2

d 1d
(H+K)<F+;5)W+mﬁg(7—— 1)

¢ Kk d
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Introducing the non-dimensional variables
z bW Qb? ]
Fol=go W= w=, O--

b’ A i T
into (2.2)—(2.4) we get
(1+R)(D*+3n DWW+ R(D+1n" Hw

n=

= —S+ Ra®, (2.5)
AD*+n'D—n"?)w—RDw—2Rw = 0, (2.6)
D+ 'D)O+w=0, 2.7
where

d b3yt
D=—, Ra =
dn 4 Av
b3/ 1 dp
S=——(—"+g].
Av\py Oz g)
R=" and A=
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Here Ra positive (negative) indicates the case when
the pipe temperature increases (decreases) with height.
Physically this means, that the ascending (descending)
cool fluid is heated or the descending (ascending) hot
fluid is cooled steadily.
The boundary conditions appropriate for the prob-
lem are:
n=s:w=0 o=0, G):—T—O—T1 = Tr,

p=1:w=0 w=0 0=0,
in which s = a/b.
The equations (2.5)—(2.7) together with the boundary

conditions (2.8) and (2.9) constitute a boundary value
problem.

(2.8)

(2.9)

To solve the problem by Runge+Kutta~Merson
method, we convert the above system of equations into
six first order equations. Considering the homogeneous
equations (which can be obtained by suppressing the
right hand side function if any) along with the following
sets of conditions

w=0,Dw=1w=0Du=00=0,D0=0;
w=0,Dw=0 0=0,Dw=10=0 D0 =0;
w=0,Dw=0,0=0Dw=00=0 D0 =1;
we obtain three particular solutions w;, w;, and
O,(i =1, 2, 3) by forward integration. Similarly solving
the nonhomogeneous equations subject to the con-
ditions
w=0,0=0,0=Tr,Dw=0, Do =0, DO =0,
we get the particular integrals wg, we and ®4. Thus
the solution can be written as
w = A;w;+wog,
w = A;w; 4wy,
0O = A4,0,+0,,
where A; are the arbitrary constants which are to be
determined by applying the boundary conditions at
n=1
3. DISCUSSION OF THE RESULTS

The Fortran program written for the solution of
simultaneous linear differential equations by employing
Runge-Kutta—Merson method has been seen [11] to
yield solution having agreement up to fourth decimal
place with the exact solution. In solving the present
problem, we have considered the cases: when the
cylinders are (i) at unequal temperature (Tr # 0} and
(ii) at equal temperature (Tr = () separately. We have
fixed up the value of 5 as 05 throughout the
computation.
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F1G. 1. Velocity distribution for different values
of RawhenR=1,4=1Tr=1.
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FI1G. 2. Velocity distribution for different values
of Rand Rafor A=1,Tr=1.

The velocity profiles presented in Figs. 1 and 2 reveal
the following interesting results. When Ra < 0, that is,
when the temperature of the pipes decreases with height
(r < 0), the buoyancy force strengthens the pressure
gradient and thereby the fluid particles move with
higher velocity as Ra increases. As Ra(<0) assumes
still higher values, in the Newtonian case, it can be
seen that the fluid rises up with very high velocity and
thus causing instability for the ftow. However, in the
present case, as there is considerable reduction in the
velocity owing to the presence of micropolar elements,
we notice that the onset of instability will be delayed.
On the other hand, when Ra > 0, i.e. when the tem-
perature of the pipes increases with height (¢ > 0), the
fluid particles get decelerated as Ra increases and
eventually lead to back flow. It is rather curious to
notice that the micro-rotation enhances the back flow.
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FI1G. 3. Micro-rotation distribution for different
valuesof RawhenR=1,4A=1,Tr=1.
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F1G. 4. Micro-rotation distribution for different values of
Rand Rawhen 4 =1,Tr=1.

It can also be seen that the effect of natural convection
is predominant at the hotter boundary for all negative
values of Ra and also for those positive values of Ra
for which there is no back flow.

The values of micro-rotation (Figs. 3 and 4) are found
to be negligibly small at the inner boundary. As long
as there is no flow reversal, the micropolar elements
at the inner boundary rotate with negative angular
velocity, while those at the outer boundary rotate in
opposite sense. A comparison of velocity and micro-
rotation profiles indicate that wherever velocity is more
there the micro-rotation is less and vice versa. This
implies that when fiuid is advancing with higher
velocity the internal microelements rotate with less
angular speed.
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FiG. 5. Temperature distribution @ for different
valuesof Rawhen R=1,A=1,Tr=1.
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F1G. 6. Temperature distribution® for different
valuesof RawhenR=1,A=1,Tr=1.

The nondimensional temperature and the Nusselt
number presented in Figs. 5 and 6, and Tables 1-3
exhibit the following fascinating results. We notice that
O and Nu, are insensitive to Ra. This implies that,
when 1 is fixed, the material constants of the fluid,
namely, thermal conductivity and kinematic viscosity
do not affect the temperature of the fluid. On the other
hand, by resetting the non-dimensional temperature
by another variable @, as @ = b3Bgf/iv = ORa, such
that all quantities except 7 are fixed, we find that the

d@
Table 1. Nusselt number Nu, | = ' for different values

of Rand Awhen Ra=1, —land Tr =1

Ra R A Inner cylinder ~ Outer cylinder
Newtonian —2:8818 —1-4455
1 1 1 —2-8836 —1-4441
3 1 —2-8845 —1-4434
5 1 —2:8848 —1-4432
1 3 —2-8836 — 1-4441
1 5 —2:8836 —1-4441
Newtonian —28761 — 14491
1 1 —2:8807 — 14459
-1 3 1 —2-8830 — 1-4443
5 1 —2-8838 —1-4438
1 3 —2-8807 —1-4459
1 S —2-8807 —1-4459

de»
Table 2. Values of Nusselt number Nu, < = d—) for
' n
different values of Raufor R=1,A=1and Tr =1

Inner cylinder Outer cylinder
Ra Micropolar Newtonian Micropolar Newtonian

-8 —2:8706

—1-4522

—2:8557 —1-4617

-1 —28807 —2:8761 —1-4459 — 14491
0 —2:8822 —2:8789 — 1-4450 —1-4473

1 —28836 —2:8818 —1-4441 —1-4455

8 —2:8937 —2-9019 — 14379 —1-4331

do
Table 3. Values of Nusselt number Nuz( = F )for
\ n/

different values of Rufor R=1, A= 1 and Tr =1

Inner cylinder Outer cylinder

Ra Micropolar Newtonian Micropolar  Newtonian
-8 22:9648 22:8456 116176 11-6936
-1 28807 28761 1-4459 1-4491
0 0 0 0 0

1 —2:8836 — 28818 —1-4441 —1-4455
8 —23-1496 —232152 —11-5032 — 11-4648

effect of 7 is prominent. As t increases the temperature
of the fluid increases as expected. It is seen from Tables
I and 2 that the effect of R or Ra is less significant.
It is also noticed that as R increases there is slight
increase (decrease) in heat flow at the inner (outer)
cylinder, while there is no effect of A. From Table 3,
for all values of Ra < 0 and for those values of Ra > 0
— — — Newtonian

R=0
o8 ' ~
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x

v
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®

F1G. 7. Temperature profiles © for different values
of RwhenRa=1,4=1,Tr=0.

de
Table 4. Nusselt number Nu, (: o ) for different values
"

of Rwhen Rg=1, —1land Tr =0
Ra R A Inner cylinder Outer cylinder
Newtonian 0-0064494 —0-0046445
i 1 0-0032330 —0:0023277
1 3 1 0-0016290 —0-0011721
5 1 0-0010947 —0-0007872
1 3 0-0032282 —0-0023245
1 S 0-0032272 —-0:0023239
Newtonian 0-0064579 —0-0046504
1 1 0-0032351 -0-0023292
—1 3 ! 00016296 —-0-0011725
5 1 0-001095 —0-00078745
1 3 0-0032303 —0-0023260
1 S 0-0032293 — 00023254
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for which there exists back flow, we find that, in micro-
polar case, the emission of heat is more from the
boundary at higher temperature while receipt at the
other boundary is less.

In the case of equal temperature we observe that
there is no effect of Ra on velocity and micro-rotation.
This is apparent as the values of ® (Fig.7) are found
to be negligibly small, due to which the buoyancy force
has become ineffective. We also notice from Tables 4
and 5 that the boundaries are cooled. However, this
cooling effect is seen to reduce as R or Ra increases.
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SOLUTION NUMERIQUE DU TRANSFERT THERMIQUE EN CONVECTION
MIXTE DE FLUIDES MICROPOLAIRES DANS UN ESPACE ANNULAIRE
ENTRE DEUX TUBES VERTICAUX

Résume—Le probléme du transfert thermique par convection libre et forcée dans un fluide micropolaire

dans l'espace annulaire entre deux tubes verticaux a été étudié par application de la méthode de

Runge-Kutta~Merson. On a trouvé que, lorsque la température des tubes décroit avec la hauteur, la

présence d’¢léments micropolaires retarde la naissance d’instabilités. D’autre part, lorsque la température

augmente avec la hauteur on a remarqué qu'une microrotation augmente I'écoulement de retour. Les

effets des paramétres micropolaires et du nombre de Rayleigh sur le transfert de chaleur sont aussi
discutés en détail.

NUMERISCHE LOSUNG DES KOMBINIERTEN KONVEKTIVEN WARMEUBERGANGS
MIKROPOLARER FLUIDE IN EINEM RINGRAUM VON ZWEI SENKRECHTEN ROHREN

Zusammenfassung—Es wurde der Warmeiibergang bei freier und erzwungener Konvektion einer mikro-

polaren Fliissigkeit in einem Ringraum aus zwei senkrechten Rohren untersucht mit Hilfe der Runge—

Kutta—Merson-Methode. Es ergab sich fiir Temperaturen, die mit der Rohrhdhe abnahmen, da8 die

Anwesenheit mikropolarer Elemente das Einsetzen von Instabilitdten verzogert. Andererseits zeigte sich,

daB fiir Temperaturen, die mit der Rohrhohe zunahmen, die Mikrorotation eine Riickstromung begiinstigt.

Der Einflufl mikropolarer Parameter und der Rayleigh-Zah! auf den Wirmeiibergang wurde im Detail
diskutiert.

YUCJIEHHOE PEHIEHME COBMECTHOIO KOHBEKTHMBHOTO TEMJIOOBMEHA
MHUKPOITIOJIAPHOU XXUOKOCTU B KOJLUEBOM KAHAJIE [ABYX
BEPTUKAJIbBHbIX TPYBOK

Angorauus — B pabote Hccnenosanacs 3anava CBOGOOHOTO M BLIHYXKIEHHOTO KOHBEKTHBHOTO

TennI000MeHa MHKPONOJIAPHON KHIKOCTH B KOJBUEBOM KaHale ABYX BEPTHKAILHBIX TPYOOK METO-

noM Pyure-KyTTa-Mepcona. O6HapykeHo, 4TO ec/in Temnepatypa TpyGOK nalaeT ¢ BbiCOTOl, TO

Ha/HYHE€ MHUKDPOTO/IAPHBIX IEMEHTOB OTTACMBAET BO3HMKHOBEHHE HEYCTOHYMBOrO coctosHusi. C

OpYro# CTOPOHEI, NIPH NOBBIILIEHUHM TEMMNEPATYPbl TPYOOK C BLICOTOM MHUKPOBPALLEHUE YCHIIKBAET

obpatHoe TeueHne. B pabore nmoapobHo o6cyxmaercss BAMsHME MMKPOMOJAPHBIX MApaMETPOB M
yucna Penest Ha TeniooOMeH.



