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Abstract--The problem of free and forced convective heat transfer of micropolar fluid in an annulus 
of two vertical pipes has been studied by applying Runge-Kutta-Merson method. It has been found 
that, when the temperature of the pipes decreases with height, the presence of micropolar elements delay 
the onset of instability. On the other hand, when the temperature increases with height it has been noticed 
that microrotation enhances the back flow. Effect of micropolar parameters and Rayleigh number on 

heat transfer are also discussed in detail. 

NOMENC&ATURE 

radii of inner and outer cylinders ; 
cylindrical polar coordinates; 
uniform temperature gradient per unit length 
along z-axis; 
temperatures of the outer and inner pipes 

at z = 0; 
temperature of the fluid; 
pressure; 
kinematic viscosity; 
density of the fluid; 
density of the fluid at z = 0 and r = b; 

thermal diffusivity; 
acceleration due to gravity; 
material constants; 
z-component of velocity; 
$-component of microrotation; 
coefficient of volume expansion ; 
Rayleigh number; 
non-dimensional parameter; 
non-dimensional micropolar parameters; 

non-dimensional co-ordinates; 
ratio of the radii. 

1. INTRODUCTION 

IN RECENT years, the study of microcontinuum fluid 
mechanics has remarkable progress. Several theories 
describing fluids consisting of molecules, whose lengths 
are not negligible when compared with the character- 
istic length of the geometry, have been formulated. 
Depending upon the approach of formulation fluids 
are called by various names such as-simple micro- 
fluids, micropolar fluids, deformable directed fluids, 
polar fluids, dipolar fluids, anisotropic fluids etc. 

The theory of micropolar fluids developed by 
Eringen [l] deals with viscous fluids in which the 
microconstituents are rigid and spherical or randomly 
oriented. This theory is supposed to describe polymeric 
fluids, liquid crystals, animal blood etc. The recent 
literature is replete with a wide variety of problems 
studied by various authors in this field. The application 

of this theory to biomechanics has been an exciting 
topic of current interest. Ariman [2], Turk et a/. [3,4] 
have analysed some steady and unsteady blood flows 
and have seen good agreement with the experimental 
results. Kazakai and Ariman [5] have introduced the 

theory of heat conducting micropolar fluids and have 
analysed the flows between two parallel plates. Ariman 
[6] has investigated heat conduction in blood. Balaram 

and Sastry [7] have discussed the free convective heat 
transfer in a parallel plate vertical channel and have 
shown that the fluid acts as a coolant. 

Our interest in this paper is to examine the combined 

effect of buoyancy force and the pressure gradient on 
the flow and heat transfer of a micropolar fluid in 

between two concentric cylinders. In Newtonian fluid, 
Morton [S] has investigated the laminar convection 
in a vertical pipe and has shown that the fluid is more 
stable in the case when the pipe temperature increases 
with height than in the case when it decreases. In a 

recent paper Gupta [9] has extended the analysis of 
Morton to unsteady case and has examined the 

phenomenon of convective heat transfer in a vertical 
pipe, and in coaxial pipes of circular and elliptic 
cross-sections. 

As the problem on hand is governed by the boundary 

value problem consisting of three simultaneous second 
order linear differential equations, it appears that it is 
not possible to obtain an analytical solution. Hence, 

we adopt the RungeeKutta-Merson method [lo], 
which automatically adjusts the step length, and obtain 
the numerical solution. 

2. FORMULATION AND SOLUTION OF THE PROBLEM 

We consider the steady laminar flow of an incom- 
pressible micropolar fluid between two vertical coaxial 
circular cylinders of radii a and b (b > a). Let z-axis 

be coinciding with the axis of the cylinders. We take 
the temperature of the inner and outer cylinders as 
T, = Tl +~z/b and Tb = T,+rz/b respectively, and the 
temperature of the fluid as T = Tb - 0(r). 
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Under Boussinesq approximation, the equations of 
motion and energy governing the flow are given by 

(2.3) 

In the above equations, p is the coefficient of 
viscosity, K the coefficient of micro-viscosity and 7 is 

the coefficient of couple stress. It can be seen that K = 0 
and y = 0 correspond to the Newtonian case. On the 
other hand, if K # 0 and ‘J = 0, there is no torque arising 
from micro stress, and the equation (2.2) indicates 
that the microrotational velocity turns out to be half 
of vorticity of the fluid. 

Using the equation of state p = ph [ 1 + fi( G- T)J, the 
equation (2.1) can be rewritten as 

+$(&)=O. (2.4) 

Introducing the non-dimensional variables 

into (2.2)-(2.4) we get 

(1+R)(D2+~-1D)~~+R(D+~-‘), 

= -S+RaO, (2.5) 

A(D2+~-1D-t/-2)~-RDw-2Rw=0, (2.6) 

(DZ+q-lD)O+w=O, 

where 

(2.7) 

R=!! and A,i- 
P d2 

Here Ra positive (negative) indicates the case when 
the pipe temperature increases (decreases) with height. 

Physically this means, that the ascending (descending) 
cool fluid is heated or the descending (ascending) hot 
fluid is cooled steadily. 

The boundary conditions appropriate for the prob- 
lem are: 

‘&I - T 
q=s: w=o, o=o, o=----=Tr, (2.8) 

T 

v] = 1: w = 0, w = 0, 0 = 0, (2.9) 

in which s = a/b. 
The equations (2.5)-(2.7) together with the boundary 

conditions (2.8) and (2.9) constitute a boundary value 
problem. 

and G. M4ir1 

To solve the problem by RungeiKutta--Merson 

method, we convert the above system of equations into 
six first order equations. Considering the homogeneous 
equations (which can be obtained by suppressing the 

right hand side function if any) along with the following 
sets of conditions 

11’ = 0, DW = 1, (1) = 0, Dro = 0, 0 = 0, DO = 0; 

LV = 0, Dw = 0, cr) = 0, Dtu = 1, 0 = 0, DO = 0: 

u’ = 0, DW = 0, (I) = 0, Dcr, = 0, 0 = 0, DO = 1; 

we obtain three particular solutions wi, wi, and 
Oi(i = 1,2,3) by forward integration. Similarly solving 

the nonhomogeneous equations subject to the con- 
ditions 

w = 0, w = 0, 0 = Tr, Dw = 0, Do = 0, DO = 0, 

we get the particular integrals M+,, w,, and O,,. Thus 
the solution can be written as 

where Ai are the arbitrary constants which are to be 

determined by applying the boundary conditions at 
‘1 = 1. 

3. DISCUSSION OF THE RESULTS 

The Fortran program written for the solution of 

simultaneous linear differential equations by employing 
Runge-Kutta-Merson method has been seen [ 1 l] to 
yield solution having agreement up to fourth decimal 
place with the exact solution. In solving the present 
problem, we have considered the cases: when the 
cylinders are (i) at unequal temperature (Tr # 0) and 
(ii) at equal temperature (Tr = 0) separately. We have 

fixed up the value of s as 0.5 throughout the 
computation. 
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FIG. 1. Velocity distribution for different values 
of Ra when R = 1, A = 1, Tr = 1. 
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FIG. 2. Velocity distribution for different values 
ofRandRaforA=l.Tr=l. 

The velocity profiles presented in Figs. 1 and 2 reveal 
the following interesting results. When Ra < 0, that is, 
when the temperature of the pipes decreases with height 
(r < 0), the buoyancy force strengthens the pressure 
gradient and thereby the fluid particles move with 
higher velocity as Ra increases. As Ra( ~0) assumes 
still higher values, in the Newtonian case, it can be 
seen that the fluid rises up with very high velocity and 
thus causing instability for the flow. However, in the 
present case, as there is considerable reduction in the 
velocity owing to the presence of micropolar elements, 
we notice that the onset of instability will be delayed. 
On the other hand, when Ra B 0, i.e. when the tem- 
perature of the pipes increases with height (t > 0), the 
fluid particles get decelerated as Ra increases and 
eventually lead to back flow. It is rather curious to 
notice that the micro-rotation enhances the back flow. 
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FIG. 3. Micro-rotation distribution for different 
values of Ra when R = 1, A = 1, Tr = 1. 
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FIG. 4. Micro-rotation distribution for different values of 
R and Ra when A = 1, Tr = 1. 

It can also be seen that the effect of natural convection 
is predominant at the hotter boundary for all negative 
values of Ra and also for those positive values of Ra 
for which there is no back flow. 

The values ofmicro-rotation(Figs. 3 and 4) are found 
to be negligibly small at the inner boundary. As long 
as there is no flow reversal, the micropolar elements 
at the inner boundary rotate with negative angular 
velocity, while those at the outer boundary rotate in 
opposite sense. A comparison of velocity and micro- 
rotation profiles indicate that wherever velocity is more 
there the micro-rotation is less and vice versa. This 
implies that when fluid is advancing with higher 
velocity the internal microelements rotate with less 
angular speed. 
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FIG. 5. Temperature distribution 0 for different 
values of Ra when R = 1, A = 1, Tr = 1. 
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FIG. 6. Temperature distribution6 for different 
values of Ra when R = 1, A = 1, Tr = 1. 

The nondimensional temperature and the Nusselt 
number presented in Figs. 5 and 6, and Tables l-3 
exhibit the following fascinating results. We notice that 

0 and Nur are insensitive to Ra. This implies that, 

when 7 is fixed, the material constants of the fluid, 
namely, thermal conductivity and kinematic viscosity 
do not affect the temperature of the fluid. On the other 
hand, by resetting the non-dimensional temperature 

by another variable 6, as 0 = b3fig6/Av = ORa, such 
that all quantities except t are fixed, we find that the 

* 
Table I. Nusselt number NuI = ‘G for different values 

i ! 
ofRandAwhenRa=l.-landTr=l 

RU R A Inner cylinder Outer cylinder 

Newtonian 
1 1 I 

3 1 
5 I 
1 3 
I 5 

Newtonian 
1 I 

-1 3 1 
5 1 
I 3 
I 5 

-2.8818 
- 2.8836 
- 2.8845 
- 2.8848 
- 2.8836 
- 2.8836 
-2.8761 
- 2.8807 
- 2.8830 
- 2.8838 
- 2.8807 
- 2.8807 

- 1.4455 
- 1.4441 
- 14434 
- 1.4432 
- I.4441 
- 1.4441 
- 1.4491 
- 1.4459 
- I.4443 
- 1.4438 
- I.4459 
- 1.4459 

Table 2. Values of Nusselt number Nu, 

different values of Ra for R = I, A = 1 and Tr = I 

Inner cylinder Outer cylinder 
Ra Micropolar Newtonian Micropolar Newtonian 

-8 - 2.8706 - 2.8557 - 1.4522 - I.4617 
-1 - 2.8807 -2.8761 - 1.4459 - I.4491 

0 - 2.8822 - 2.8789 - 1.4450 - 1.4473 
1 - 2.8836 -2.8818 - I.4441 - I.4455 
8 - 2.8937 - 2.9019 - 1.4379 - 1.433 1 

Table 3. Values of Nusselt number Nu J =;)f”t 

different values of Ra for R = 1, il = I a\nd A, = I 
_ __~___ 

Inner cylinder Outer cylinder 
Ru Micropolar Newtonian Micropolar Newtonian 

-8 22.9648 22.8456 I I.6176 I I.6936 
-I 2.8807 2.8761 I .4459 1.4491 
0 0 0 0 0 
I - 2.8836 - 2.88 18 - 1.4441 - 1.4455 
8 -23.1496 -23.2152 - Il.5032 - I I.4648 

effect of r is prominent. As t increases the temperature 

of the fluid increases as expected. It is seen from Tables 

1 and 2 that the effect of R or Ra is less significant. 
It is also noticed that as R increases there is slight 
increase (decrease) in heat flow at the inner (outer) 

cylinder, while there is no effect of A. From Table 3, 
for all values of Ra < 0 and for those values of Ra > 0 

- - - Newtonian 
r 
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08 /-\ 

/ \ 
/ \ 

FIG. 7. Temperature profiles 0 for different values 
ofRwhenRa=l.A=l.Tr=O. 

Table 4. Nusselt number Nul 

ofRwhenRrr=l,-landTr=O 

RLI R A 

Newtonian 
1 1 

1 3 1 
5 I 
I 3 
1 5 

Newtonian 
I I 

1 3 I 
5 1 
I 3 
1 5 

Inner cylinder Outer cylinder 

0.0064494 - 0.0046445 
0.0032330 -0.0023277 
0.0016290 -0.0011721 
0~0010947 - 0.0007872 
OGt32282 - 0.0023245 
PO032272 - 0.0023239 
0.0064579 - 0.0046504 
0003235 I -0.0023292 
0.0016296 -0.0011725 
0~001095 - 0.00078745 
0.0032303 - 0.0023260 
0.0032293 - 0.0023254 
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for which there exists back flow, we find that, in micro- 
polar case, the emission of heat is more from the 
boundary at higher temperature while receipt at the 
other boundary is less. 

In the case of equal temperature we observe that 
there is no effect of Ra on velocity and micro-rotation. 
This is apparent as the values of 0 (Fig. 7) are found 

to be negligibly small, due to which the buoyancy force 
has become ineffective. We also notice from Tables 4 
and 5 that the boundaries are cooled. However, this 
cooling effect is seen to reduce as R or Ra increases. 
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SOLUTION NUMERIQUE DU TRANSFERT THERMIQUE EN CONVECTION 
MIXTE DE FLUIDES MICROPOLAIRES DANS UN ESPACE ANNULAIRE 

ENTRE DEUX TUBES VERTICAUX 

R&urn&Le probleme du transfert thermique par convection libre et for&e dans un Auide mic<opolaire 

dans l’espace annulaire entre deux tubes verticaux a &t& ktudi6 par application de la mkthode de 
Runge-Kutta-Merson. On a trouvb que, lorsque la tempkrature des tubes dCcroit avec la hauteur. la 
prisence d’&lCments micropolaires retarde la naissance d’instabilitks. D’autre part, lorsque la tempkrature 
augmente avec la hauteur on a remarqut qu’une microrotation augmente I’&coulement de retour. Les 
effets des paramttres micropolaires et du nombre de Rayleigh sur le transfert de chaleur sont aussi 

discutks en d&tail. 

NUMERISCHE LOSUNG DES KOMBINIERTEN KONVEKTIVEN WARMEUBERGANCS 
MIKROPOLARER FLUIDE IN EINEM RINGRAUM VON ZWEI SENKRECHTEN ROHREN 

Zusammenfassung-Es wurde der WCrmeiibergang bei freier und erzwungener Konvektion einer mikro- 
polaren Fliissigkeit in einem Ringraum aus zwei senkrechten Rohren untersucht mit Hilfe der Runge- 
Kutta-Merson-Methode. Es ergab sich fi.ir Temperaturen, die mit der RohrhGhe abnahmen, dall die 
Anwesenheit mikropolarer Elemente das Einsetzen von Instabilitaten verz(igert. Andererseits zeigte sich, 
dal3fiir Temperaturen,die mit,der Rohrhahe zunahmen, die Mikrorotation eine Riickstrijmung begiinstigt. 
Der Einflulj mikropolarer Parameter und der Rayleigh-Zahl auf den WCrmeiibergang wurde im Detail 

diskutiert. 

YI/ICnEHHOE PEIIIEHEiE COBMECTHOFO KOHBEKTMBHOrO TEI’IJIOO6MEHA 
MMKPOrIOfl~PHOfi XKMAKOCTM B KOJILUEBOM KAHAJIE ABYX 

BEPTMKAJIbHblX TPY6OK 

AHHoTauHx - B pa6oTe RCCJleLtOBaJlaCb 3ajIaYa CBO60nHOro H BbIHymLteHHOrO KOHBeKTWBHOrO 

TenJIOO6MeHa MHKpOnOnRpHOti XGUtKOCT1I B KOflbUeBOM KaHaJle nByX BepTMKaJlbHblX Tpy6OK MeTO- 

nor+4 PyHre-KyTTa-MepCOHa. 06HapyxeH0, YT~ ecnH TeMnepaTypa ~py60~ nanaeT c BbicoToR, TO 

HaJIHYHe MHKpOnOnSpHbIX 3JleMeHTOB OTTIlrHBaeT B03HHKHOBeHHe HeyCTOiiYHBOrO COCTOIIHMR. C 
.IlpyrOfi CTOPOHLI, npH nOBt.lLUeHLiIl TeMnepaTypbI Tpy60~ C BbICOTOii M&iKpOBpallJeHkle yCHJILfBaeT 

06paTHOe TereHue. B pa6ore nonpo6tio o6cyxnaeTcn BnAflHHe MHKpononRpHblX napaMeTpos n 

Yucna Penen Ha TennooGMen. 


